
An exact solution to a spin-1 chain model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys.: Condens. Matter 5 5811

(http://iopscience.iop.org/0953-8984/5/32/011)

Download details:

IP Address: 171.66.16.159

The article was downloaded on 12/05/2010 at 14:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/32
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys:. Condens. MaMI. S (1993) 5811-5828. Printed in the UK 

An exact solution to a spin-1 chain model 

M W Longt and S Siakf 
t School Of Physics, Birmingham University. Edgbaston, Birmingham B15 2"T, UK 
1 Rutherford Appleton Laboratory, Chilton, Didcot. Oxon OX14 OQX. UK 

Received 21 October 1992. in final form 2 April 1993 

Abstract We present a new class of exactly solvable spin models. The solutions involve 
broken translational symmetly, in contrast to the Haldane gap, and constitute a new ryPe of 
ground state for a spin-one chain. The models have ground states with precipitously short- 
range spin correlations and exhibit gaps to solitonic spin excitations. We construct a solvable 
model for each value of the toml spin of the underlying atoms. with the solution corresponding 
to the natural generaliza(ion to the Majumdar-Ghosh state, of 'dimer' pairing, to larger spin 
magnitudes. 

1. Introduction 

Atoms which lose their charge degrees of freedom but retain an open shell are said to 
have 'local moments'. In almost all cases local moments order at low temperatures, but in 
rare cases no long-range order is observed down to the lowest attainable temperatures, and 
certainly at lower energies than the scale on which the local moments interact Sbangely, 
the systems without order appear to be some of the most physically interesting. High- 
temperature superconductors and heavy fermions both have local moments which do not 
order (appreciably), and systems which are theoretically predicted not to order have recently 
also come under intense experimental study [l]. 

There are two fundamental issues of theoretical interest. Firstly, which physical effects 
prefer spin states which lack long-range order, and secondly what is the nature of the state 
stabilized in the place of the ordered state. The first question would appear to have several 
possible answers. Geometric frustration theoretically causes difficulties, on account of the 
degeneracy that it introduces into the ordering options. There is some experimental evidence 
supporting the idea that geomehy can prohibit long-range order [Z]. Quantum fluctuations 
can also theoretically eliminate long-range order. Both theoretically and experimentally 
the onedimensional chain of spin-one atoms appears to have only short-range order [3], 
although the three-dimensional character of the physical systems dominates eventually. The 
most interesting experimental systems conduct electricity and pequent exchange of the 
conduction electrons with the local moments also seems to severely curtail any magnetic 
order. Although the cause of the loss of order is of great importance, we cannot address 
this issue directly and we can only give a minor insight into the lesser problem of which 
types of interaction between local moments can eliminate order. 

The second theoretical issue, involving the nutwe of a low-temperature state of a spin 
system without long-range order, is more open-ended. An understanding of the physics of 
a system can be developed in many parallel ways. One quite powerful idea is to find or 
construct an exactly solvable model for which the ground state and excitations can be (fairly) 
unambiguously deduced. Any other model which can be reached by continuously varying 
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parameters without incumng a phase transition should then have the ‘same’ physics. It is 
this basic technique that we propose to use. 

This idea of finding an exactly solvable model ‘close by’ in parameter space has been 
successfully applied to the spin-one chain Heisenberg mcdel [4], in order to try to understand 
the Haldane gap [SI and give a physical picture for the low-lying excitations. Since the 
fundamental concepts used in this previous calculation are central to our analysis, we shall 
devote space to explaining them in the next section. 

In this paper we will take a simple elementary state as our ‘solution’ and construct a 
particular Hamiltonian for which it is an eigenstate. The Hamiltonian derived will be seen 
to be uniquely determined by the constraints we impose. There is a class of exactly solvable 
models for spin-half systems, known as ‘dimer’ solutions, for which our solutions are the 
natural generalization to larger spin magnitudes. 

In section 2 we introduce projection operators and interpret some of the known solutions 
to spin models in terms of them. In section 3 we develop our exactly solvable models and 
in section 4 we present some numerical verification to our assertions. We present our 
conclusions in section 5. 

M W Long and S Siak 

2. Projection operators 

In this section we consider possible generalizations to the Heisenberg model, with larger 
values of spin for the underlying atoms, arguing that various possibilities are reasonable 
and can lead to quite different physics. There are two assumptions which we make, each 
leading to a refinement of the cIass of models to be considered. Our fust assumption is 
the restriction to two-body interactions and our second assumption is that of isotropic spin 
interactions. Neither assumption is likely to be found experimentally, where a host of 
crystal-field, spin-orbit and similar interactions break these symmetries, but there remains 
a simple class of models with relatively few residual degrees of freedom and a surprising 
wealth of possible ground states. 

With two spins, the only isotropic quantity remaining is the scalar product between the 
spins and so the interaction takes the form 

ff = j?ij(Si . Sj) 
i j  

(2.1 ) 

where is a function of the real variable x .  Since the total spin of each atom is 
assumed to be fixed, with value S say, we could equally well use the total spin of the pair 
of interacting spins, (Si + Si) . (Si + Si) = ~ S ( S  + I )  + 2s; - sj 3;. say, in terms of 
which 

where pi+) = j?:j [x/Z - S(S + I)] is the derived function. In fact, the functions p i j (x )  

can be chosen to be polynomials of order 2s. since the operator 3; satisfies 
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which is a polynomial of order 2s + 1. This result is a direct consequence of the fact that 
the sum of two quantum-mechanical spins yields another spin which takes values for its 
magnitude lying between the sum and difference of the two original spin magnitudes. 

. 

For the case of spin-half, we find that 

(2.4) *2 -2 Sij(Sij - 2) = 0 

and so the Hamiltonian reduces to 

and all that remains is the Heisenberg model with interaction strength Jij (up to an irrelevant 
constant). 

For the case of spin-one, however, we find that 

-2 -2 Sij(Sij  - 2)( i$  - 6)  = 0 

and so we find the more complicated model 

H =E Jiji;. + E K , j ( . $ ) 2 = 4 c K i j ( S i  -S j )2+2c(J i j+8Ki j )S i  .Sj 
i j  i j  i j  i j  

+4CC(Jij + 4 K i j ) .  
i j  

It is usually assumed that the spin interactions are short-range, and indeed they are 
often restricted to nearest neighbours. Under this assumption, combined with periodicity on 
a linear chain, we find the model 

for s p i n a e  atoms, which reduces to 

for spin-half atoms. One might anticipate that the two models have similar behaviour, but 
this is simply not true. 

The spin-half model is exactly solvable, yielding pure ferromagnetism when ( J - i K )  c 
0 and a one-dimensional form of antiferromagnetism 161 when (J - fK) =- 0. Quantum 
fluctuations eliminate long-range order in one dimension, and so only power-law correlations 
remain in the antiferromagnetic case. However, power-law correlations are sufficient to 
enforce a divergent sublattice magnetization and to allow gapless spin-wave-like excitations, 
analogous to antiferromagnetism in higher dimensions. 

The spin-one model has surprisingly rich behaviour, however, involving several new 
types of ordering. The pure Heisenberg system (K = 0) has been heavily studied, exhibiting 
pure ferromagnetism when J c 0, analogous to the spin-half case, but for J > 0 there are 
only short-range spin correlations and the Haldane gap to excitations [5]. This result is a 
surprise to most people, because it suggests that spin-one atoms might be radically different: 
f” spin-half atoms. It could also be argued, however, that using the spin-one Heisenberg 
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model in order to generalize the spin-half Heisenberg model is not very natural! Indeed, 
when J = K > 0 the spin-one chain is exactly solvable with power-law spin correlations 
and gapless excitations [7]. This model would appear to be a more natural generalization 
for the Heisenberg model to spin-one, since the properties of the solution are so similar. 
There are three other exactly solved h i t s  of the model: J = 3K z 0, which is thought to 
be continuously connected to the Heisenberg model and constitutes a useful simple model 
from which the physics of the Haldane gap can be deduced, J = -K  z 0, which yields a 
second gapless phase; and J = 0 K e 0, which yields a gapped phase which is probably 
continuously connected to the solution presented in this article. The first solution is the 
content of [4] which has continually been alluded to and the final solution has been solved 
by Bethe ansatz and other techniques [SI. 

One fact which should be born in mind when comparing the spin-half Heisenberg model 
with the exactly solvable gapless spin-one model with J = K ,  is that both models may 
be thought of as permutation group models. In fact, with the inclusion of an arbitrary 
constant, both models can be chosen to act only on pairs of states with spins in ‘different 
directions’, IOU’) say, yielding Hluu’) = -$(]uu’) - Iu’u)), a result that is independent 
of which particular spin labels are chosen. For spin-half there are only two spin labels, but 
for spin-one there are three spin labels which are all being treated as equivalent. .In the 
spin-one Heisenberg model, the two states 110) and lil) play quite different roles and this 
permutation symmetry is broken. 

Although the present representation in terms of powers of scalar products is physically 
quite natural, it is not the easiest representation to work with. The action of the Hamiltonian 
in this representation is quite difficult to interpret. Fortunately, there is a representation with 
a straightforward interpretation which is technically much more useful: total-spin projectors. 
Instead of using powers of the scalar product between two spins, one can use operators which 
project the total spin of the pair onto each of its different possible values: where the 
total spin of the resulting pair becomes (3;) = n(n + I). 

The transformation which converts the original description into total-spin projectors is 
linear and can be constructed from the identities 

(2.10) 

which clearly project out all other possible values of the total spin and are normalized to 
unity. Using the identities 

(2.11) 

it is straightforward to show that the P t j  are. orthogonal projection operators which satisfy 

(2.12) 

and by considering the sum of projectors as a polynomial in j; of order 2s. which takes 
the value of unity at the 2s + 1 values of n(n + I) ,  then also 

(2.13) 
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and the projectors are complete. The inverse transformation is more elementary to constmct 
because of the projector characteristics: 

(2.14) 

and so the projectors may be understood as the representation which diagonalizes the total 
spin of a pair. 

In the projector representation a general isotropic two-particle interaction may be written 
as 

where the completeness relation means that one of the projectors can be eliminated in favour 
of the others if desired. 

The previous description of the linear chain with nearest-neighbour coupling is slightly 
simplified in the projector representation: 

H = - C(J - fK)P:i+, 

is the usual choice for spin-half, and 

H = - c [ 3 ( J  - K)P:i+I + 2Jcfi+,] (2.17) 

is natural for spin-one. The exact solutions to the spin-one case correspond to particular 
projectors: the gapless solution ( J  = K )  is just the spin-one projector with a negative matrix 
elemenL the Haldane-like solution (3K = J )  is just the spin-two projector with a positive 
matrix element, and the solution akin to the present article (J = 0) is just the spin-zero 
projector with a negative matrix element. 

The final concept that is worth explaining, although it will be of little help in the present 
analysis, is that of a ‘valence bond‘. Any spin can be represented in terms of a sum of 
constituent spin-half particles which are all parallel. States can then be constructed for 
which the constituent spins in one atom are made into spin singlets or valence bonds with 
constituent spins on other atoms. The constraint that the constituent spins on any one atom 
are all parallel then ‘shares’ the valence bond equally between all constituent spin-halves 
but does not annihilate it. The power of the construction is that the states constructed have 
restricted values of total spin. For example, a pair of atoms which incorporate a valence 
bond between them can never be totally parallel. If it is possible to lay down a valence 
bond between all relevant pairs, then a state can be constructed for which the maximal 
spin-projector vanishes on all such pairs. This argument allows the P z  model for the 
spin-one chain to be solved 141, since the unique state with a valence bond between each 
nearest-neighbour ensures that the positive definite Hamiltonian attains its minimum value of 
zero. As was pointed out in the previous work, there are several interesting generalizations, 
including the solution of the spin-two chain with an interaction of the form JI  P + 52 P4 
with JI  =. 0 and JZ =- 0 which is exactly solved by placing hvo valence bonds between 
neighbouring atoms. 
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Having briefly reviewed some of the features of the spin-one chain system, we are 
now in a position to explain our motivation. In a comparison between the spin-half and 
spin-one chains, there are several similarities and several differences. Both systems have a 
gapless phase with power-law correlations and both systems have a phase with short-range 
correlations and a gap to excitations. The previously mentioned P2 Hamiltonian yields 
the gap for the spin-one chain, while for the spin-half chain some next-nearest-neighbour 
interactions can be employed to stabilize the gapped Majumdar-Ghosh [9] phase which 
has a fixed configuration of valence bonds. At first sight the analogy between the two 
systems appears strong, but upon closer inspection a difference emerges: the spin-one state 
is isotropic whereas the spin-half state involves a spontaneously broken symmetry. Although 
it is quite easy to find spin-half systems with two atoms per unit cell which are isotropic, 
the possibility of finding a spin-one system with a broken symmetry is a natural goal. The 
present article is the results from the attempt to find an elementary spin-one model with 
an isotropic Hamiltonian but a spontaneously broken symmetry. The recently discovered 
solution to the spin-zero projector Hamiltonian probably has this broken symmetry, and 
our solution definitely has this broken symmetry and looks numerically to be continuously 
connected to it. 

A brief investigation of the problem should convince the reader that a solution with 
broken symmetry should exist. The state with all the atoms paired up into total-spin 
singlets ought to be stabilizable for an appropriate choice of Hamiltonian. Equivalently, 
in valence bond language, the state with alternating pairs of valence bonds between the 
spin-half components ought to be stabilizable. The natural choice of Hamiltonian which 
might stabilize this symmetry broken phase is the Po projector with negative matrix element. 
As motivation, two randomly oriented spin-one atoms are only found in a singlet one ninth of 
the time. Classical ordering improves this probability to one third and quantum fluctuations 
will further enhance it. However, it seems unlikely that quantum fluctuations in this spin- 
one system will do better than in the equivalent spin-half system, which would be required 
in order to dominate the estimate of five ninths which is found (on average) in the state with 
all atoms paired up into nearest-neighbour singlets. It is probable that the ground state to the 
chain of nearest-neighbour spin-one atoms with total-spin-zero projection interaction yields 
a pair of broken symmetry ground states with essentially equivalent physics to the state 
where spins pair up into nearest-neighbour total-spin singlets. In the next section we will 
present a minor modification to the Hamiltonian which exactly stabilizes the total-spin-zero 
‘dimer’-paired state as the ground state, together with some numerical evidence to analyse 
the spin zero projector conjecture in the subsequent section. 

3. Exactly solvable models 

In this section we use spin projectors to construct some isotropic models which have ground 
states involving all the atoms being paired up into nearest-neighbour total-spin singlets. Our 
construction includes the Majumdar-Ghosh [9] Hamiltonian as a special case, generalizing 
it to all possible spin magnitudes. 

There are a couple of technical facts which are frequently used and could cause 
confusion. Firstly, spin projectors commute with any total-spin operator for a cluster of 
atoms which contains the two spins being projected. So, for example, if three spins are in 
a total-spin singlet, then if any pair are spin projected the only permissible result will find 
the pair with the same total spin as the third spin and in a total-spin singlet with it. More 
importantly for us, if four spins are in a total spin singlet, then a spin projector applied to 
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one pair will automatically spin project the other pair onto the same value of total spin. The 
proof of this result is elementary since the projectors are polynomial combmtions of the 
total spin of the relevant pair $j, and this total spin certainly commutes with any function 
of Si + Sj including (Si + S, + '& S#. Secondly, the parity under exchange of a pair 
of spins in an eigenstate of total spin is in terms of their total spin n. This result 
.allows us to connect permutations of spins with projection operators. A proof of this second 
result is less obvious and one can use valence bonds to prove it. A pair of atoms with a 
fixed total spin can be represented as symmetrized composites of spin-half objects for which 
there are a certain number, m say, of valence bonds connecting the two atoms, with all the 
remaining spin-half particles parallel. The parity under exchange is clearly (-l)m for this 
representation and also m = 2 s  - n where n is the total spin of the pair. 

We will construct the Hamiltonian in the next subsection and then derive an 
approximation for the low-energy excitations in the following subsection. 

3.1. The ground state 

We build the model as a minor extension to the nearest-neighbour total spin-zero projector 
Hamiltonian: 

where we have centred our projectors on a particular atom in the second representation. We 
will reexamine this Hamiltonian in subsection 3.3. 

We will conshuct a model for which nearest-neighbour atoms pair up into independent 
total-spin singlets. The two possible ground states will be denoted by I+) and I-). Our 
first task is to apply the Hamiltonian to these states, We find 

where 5i.j is an operator which permutes the two spins at i and j .  The first term comes from 
the spin projectors which act directly on the total-spin singlets, while the second summation 
comes from individual spin projectors applied to the uncorrelated bond neighbouring the 
relevant central atom i. The form that it takes requires some understanding. If we consider 
the three atoms at sites i - 1, i and i + 1,  then the total spin of all three is equal to the 
spin of the atom which is not paired up inside the triple. When the uncorrelated bond is 
projected, conservation of the total spin of the triple ensures that the third atom ends up 
with this total spin and the spin configuration on the two edge atoms has been exchanged. 
The matrix element must be 1/(2S+ I) ,  because the probability of finding two uncorrelated 
spins in a total-spin singlet is 1/(2S + I)*, and the phase can be deduced easily from a 
particular representation. 

We now use spin projectors to describe the permutation 

2s 2s 

n=o n=O 
%I,i+lI*) = C$-l.i+l~in_l,i+l~*) = C ( - 1 ) 2 S - n ~ i - ~ . j + l ~ i )  ~ (3.3) 

where this result follows from the panty of a pair of spins in an eigenstate of total spin. 
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We are now in a position to conshuct our model, since if we use 

where only the anti-symmetric projectors are employed, then we find that 

and therefore that li) are~eigenstates of the combined Hamiltonian. 
The first few examples are as follows. For spin-half: 

J 
H = - J  p?;+l - - P,-l,i+l. 

i 2 i  

For spin-one: 

For spin-;: 

(3.4) 

(3.5) 

(3.5) 

(3.7) 

3.2. Excifafions 

Although we have only managed to show that the states I&) are eigenstates of our 
constructed Hamiltonian, in fact they are ground states. A ‘dirty’ but rigorous proof, is to 
decompose our Hamiltonian into ‘centred‘ pieces, H = Hi with H; = -(J/2)(P/-1.i + 
P!i+l) + [J/(2(2S + l)l(%-1.i+1 - I), and then to exactly solve Hi on the three relevant 
atoms. This provides a lower bound to the ground-state energy for the chain problem which 
agrees with the energy of our solution. The next natural question to address is the M~UE of 
the excitations in this type of system. It is not possible for us to perform an exact analysis 
of the excitations, but using the ideas already presented, we can produce a surprisingly 
accurate analytic desmiption for them. The states used are equivalent to those generated 
in previous work on the Majumdar-Ghosh model [9], although our technical generalization 
follows a rather different route. 

The states we employ are denoted by li), where the atom at position i has a fixed spin, 
decorrelated from the rest, and all the other spins are paired off into nearest-neighbour spin 
singlets. These states are locally eigenstates of the Hamiltonian with the exception of the 
bonds surrounding the special atoms i. Applying the Hamiltonian yields 
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The first term is just the ground-state energy. The second term is the energy loss from the 
terms centred on atom i. The third term comes from the nearest-neighbour projectors and 
the fourth comes from the next-nearest-neighbour projectors. The third term can be seen to 
involve the projection of an uncorrelated pair of spins in a t?iple which contains a pair in a 
total-spin singlet Total spin conservation for the triple means that the uncorrelated spin is 
permuted with a spin which is two atoms away. Since a singlet is reflected in the process 
there is a natural phase picked up. The thii term yields 

J(- 
2(2S + 1) (li - 2) + li + 2)) + (3.9) 

where the relative phase of the states is chosen by constructing all states by uniform 
translations. The fourth term yields the original state combined with the state where the 
two spins surrounding the decorrelated atom are permuted, 1;) say. Thus 

The final step in the argument involves the four spins surrounding the decorrelated spin, 
which are in a total-spin singlet. This fact means that if we use either the pair to the left 
or to the right to effect a projection decomposition, then both are simultaneously projected 
onto the same total spin: 

and so finally 

(3.12) 

This result enables us to find the dispersion of our additional uncorrelated spin 
approximately. The initial difficulty is that the states li) are non-orthogonal. This difficulty 
is usually prohibitive, but for the present case we have a saviour. All the terms appearing 
in the final contribution are individually orthogonal to g c h  and every state li). This is 
easy to see because either one of the two spin projectors gives no overlap with one of the 
total-spin singlets contained in l i) ,  or there are an infinite number of mismatched singlets. 
Finding the dispersion in the restricted subspace generated by li) yields 

(3.13) 

There is a gap of G = a J [2S/(2S + I)]' to a cosine band of halfwidth W = J/(2S + 1) 
predicted. 

Using similar types of argument, it is possible to include the wavefunction, 

(3.14) 
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into our variational calculation. Without direct proof, which is complicated, we quote the 
next variational estimate to the dispersion: 

M W Long and S Sink 

where S‘ = 2s + 1 and c = cos[2k + (2s + l ) x ] .  This result will be tested in the next 
section. 

33.  The total-spin-zero projector Hamiltonian Ho 
The nearest-neighbour total-spin-zero projector Hamiltonian 

Ho = - J P:i+, (3.16) 

has additional symmetries which facilitate interpretation and comparison between models 
with different total-spin S. The symmetries are controlled by the previously mentioned 
local conservation laws of total spin under projection. Perhaps the clearest explanation uses 
a non-orthogonal sometimes incomplete and sometimes overcomplete ‘basis’ based upon 
grouping spins into pairs. The states we consider find all the spins paired up into parallel 
eigenstates of total spin. The reason for this choice is that such a pairing is ‘conserved‘ by a 
term-by-term application of our Hamiltonian. The Po projector acting on such a pair gives 
unity if the pair is in a singlet and vanishes otherwise. When two spins are projected from 
distinct pairs, however, the local conservation laws ensure that the pair projected becomes 
a singlet and the remaining pair receives the sum of the total spins of the original pairs. 

There are many conceptual difficulties in dealing with this type of basis, so we will make 
the discussion specific to start with. Let us consider the total-spin-zero subspace, where all 
pairs are in spin-singlets. This subspace contains the ground state to our problem. The first 
clear difficulty is that the number of such states is astronomically large in comparison to the 
actual number of independent total-spin singlets. This basis is of little use unless the number 
of relevanr pair configurations can be severely curtailed. It is the action of the Hamiltonian, 
and which particular configurations it creates, which can be used to restrict the state space. 
For a bipartite connectivity, the bonds only occur between the two natural sublattices, and so 
we can restrict attention to pairings that pair spins one from each sublattice. This is a huge 
reduction, but still not sufficient to make the basis useful. It is only when one applies the 
nearest-neighbour Hamiltonian to the linear chain that the hue and useful resaiction becomes 
apparent we may restrict attention to pairings for which no two singlets are ‘interleaved’, 
i.e. either both or neither of any particular paired pair of spins are found between any other 
paired pair. This result has been used before [IO], and significantly reduces the size of 
the relevant basis for a nearest-neighbour spin Hamiltonian. There are precisely as many 
such configurations as there are total-spin-zero states for the spin-half model, and we give 
a quick counting proof in the appendix. For the spin-half model this ‘basis’ is complete 
although non-orthogonal. For the spin-one model this ‘basis’ is incomplete and describes 
only a fraction of the total number of states. The action of the Hamiltonian is closed 
on this subspace and the problem has been ‘block’ diagonalized in a sense. Some of the 
additional states may be constructed from the inclusion of total-spin-zero triples, which are 
also preserved by the Hamiltonian. When we move away from total-spin-zero, the basis 
remains useful, leading to the lowest-lying excitation for example, but the completeness 
result is lost. In the total-spin triplet subspace the ‘basis’ is overcomplete for spin-half and 
undercomplete for spin-one. 
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We now arrive at the interpretational value to this representation. We can compare 
the action of our Hamiltonian on systems with different underlying values of spin, S. Our 
chosen basis is pictorially identical for all values of spin, S, and the action of the Hamiltonian 
has only minor modification. For our basis, any nearest-neighbour spin-singlet pair yields 
an energy -J, and so there is a diagonal contribution counting the number of nearest- 
neighbour singlet-pairs. Obviously this contribution strongly favours our states /&). When 
acting on two spins in different pairs, we obtain the state where these two spins are paired 
into a singlet leaving the other two also in a singlet. If one sublattice always precedes the 
other in our singlet definitions, then the matrix element is always - J / ( 2 S  + 1) for this 
process. The Hamiltonian matrix is positive definite, as is the orthogonality matrix, and so 
the ground-state wavefunction is positive definite in this representation. The only difference 
between the different values of spin, S, is that the longer-range spin correlations are reduced 
for large spin because the matrix elements connecting them are smaller, whilst their cost 
remains invariant. An interesting question is: for which value of total spin (if any) does the 
system achieve a broken symmetry? As S H 00, the ground state appears to become I&), 
and so it seems natural that a critical spin, S, say, ought to exist. On the other hand, we 
are attempting to exchange the limits N H w and S H CO with this argument and there 
are no guarantees. 

We have employed our basis to construct analytic solutions to Ho for up to 14 spins 
analytically, obtaining the correct answers for both spin-half and spin-one, which can be 
calculated independently using exact diagonalization methods on a complete basis. Using 
these admittedly rather small systems we have finite-size scaled the gap to the second 
lowest-lying spin-zero excitation, for increasing values of spin S. Obviously, the first total- 
spin-zero excitation becomes the second ground-state in a symmetry-broken system. It is 
numerically quite clear that there is a gap to this second excitation for spin-two moments, 
and the gap appears incontrovertible for spins as large as ten. We have observed the expected 
exponential decay of the first total-spin-zero excitation as expected, and feel fairly safe in 
concluding that the symmetry-breaking does become fact for a finite fairly small value of S. 
Unfortunately, the spin-I and spin-: systems are simply too small to predict the existence 
or not of a gap, and so we have been unable to successfully predict the particular value of 
S at which the transition occurs. Using a numerical representation for the non-interleaved 
basis we extended the length of the numerical chain to 32 spins, but still the system is 
ambiguous for spin-I. Given the exact results for these systems [8], it is not surprising that 
the numerical analysis is ambiguous. The correlation length of around 21 means that either 
huge systems, or investigations into parameter dependence are required. A more accurate 
investigation is attempted in the next section, where we attempt to verify that there is no 
change of phase between our exact solution and the spin-zero projector Hamiltonian. 

4. Numerical results 

Since the theory is supposed to be exact, one can ask why numerical work was actually 
embarked upon. There were several reasons. Firstly, although we believe in the 
arguments presented, there are several areas of mathematical ‘woolliness’ in which numerical 
confirmation can increase confidence. Secondly, although we have shown that our exact 
solutions are eigenstates, we have no trivial mathematical evidence that they are ground 
states. The numerical calculations provide evidence that the solutions are indeed ground 
states. Thirdly, although the ground states are exact eigenstates, the predicted excitations are 
not eigenstates and involve an approximation. We can determine the spectrum of the lowest- 
lying topological excitation numerically and compare it to the analytic solution. Finally, we 
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can use the computer to vary parameters in the model and hence to test the extent of stability 
of our proposed type of ground state. In particular, we can try to determine whether the 
sum of nearest-neighbour spin-zero projectors also has this symmetry-broken ground state. 

For both the spin-half chain and the spin-one chain our solution does indeed provide 
the numerical ground state for up to 24 and 16 spin-loops respectively. It should be noted 
in passing that the solution can rigorously be proved to be the ground state for the spin-half 
chain, using a different method of proof [9]. 
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. - the lowest-lying solitonic excita- 

A numerical study of our low-lying excitations is much simplified by the observation 
that they are topological excitations and can only be created and destroyed in pairs. A 
judicious choice of boundary conditions then ensures that only one such excitation exists 
and can be studied in isolation. For the present problem, odd-membered chains with periodic 
boundary conditions is the natural choice. In figure 1 the excitation energy as a function 
of Bloch momentum is plotted and overlayed for a sequence of chains of increasing length. 
For the spin-half case there is a slow convergence whereas for the spin-one chain there is a 
much faster convergence. The analytic predictions are seen to be excellent, indicating that 
our proposal is indeed probably the lowest-lying topological excitation. The form of the 

- 

0.0 

mate desnibed in the text end the 
dotted curve is the variational an- 

, c , , ( i , , L  b , , , , b , , , < , , , , L ,  alytical correction quoted in the 
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dispersion is also exactly as expected, having two periods and being translated for the spin- 
half case. The only major difference occurs at high energies, where the calculated dispersion 
is lower than our approximate prediction. The states omitted in our approximation explain 
this small disagreement, and inclusion of the state omitted in the spin-half case is analytically 
tractable, yielding the dotted curve in figure I@). 

Fwre 2. The energy gap (in 
units of J )  to the lowest-lying 
excitations of the even-memtaed 
'chains, plotted as a function of 
the invene length of the chain. 
1 / N .  The small points are spin- 
half and the large points are spin- 
OW.  

In many systems, although a single soliton is the lowest-lying excitation, two such 
solitons bind [ I  I]. In order to test this hypothesis numerically, we have finite-size scaled 
the energy gap to excitations for the even-membered rings in figure 2. As anticipated, the 
gap scales towards twice the gap for the soliton and the slope of the convergence indicates 
that the two solitons repel each other. 

Our final calculations are devoted to a problem that we have not tackled analytically: 
the range of parameters over which our solution is stable. Our conjecture is that for the 
spin-one chain the symmetry-broken state remains the ground state for the nearest-neighbour 
spin-zero projector Hamiltonian. This result is certainly not true for the spin-half variant, 
where it is known by exact solution that the ground state is isotropic and gapless. 

The technique that we use in order to look for a broken symmetry has been explained 
and tested in a previous publication [IZ]. We use a two-stage process in which the initial 
analysis involves total-energy calculations. The existence of the broken symmetry shows 
up as a twofold spin-zero degeneracy, which is exponentially observed in a finite-size 
scaling analysis, combined with a gap to the lowest-lying total-spin-triplet excitation. These 
calculations are plotted in figure 3 and with the use of polynomial extrapolation it is easy to 
believe that there is an exponentially decaying gap to the singlet excitation but that any gap to 
triplet excitations becomes too small to measure. The secondiuy analysis involves spin-spin 
correlation functions. The symmetry broken combinations of the two stakes which become 
degenerate in the long-chain limit are determined and the correlation functions associated 
with the order panmeter are finite-size scaled. These calculations are also plotted in figure 3, 
and with further polynomial extrapolation it seems most natural to believe that there is a 
residual broken symmetry. 

Due to the difficulties in picking up the gap to triplet excitations, we made a further 
attempt to find a gap to solitonic excitations. Employing the odd-membered rings with 
periodic boundary conditions, and using an even-membered ring with either one more or 
one less spin in order to estimate the ground-state energy per bond, we finite-size scaled an 
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Figure 3. In this and subsequent figures we finite-size scale the results of a sequence of 
models which can be parametrized by HO + AH1 with X = 0. i, t. 2 and 1. The smaller 
the parameler A. the larger the points plotled. We plot (U) the gap to spin-singlet excicmons 
( A  = I is omitled because it vanishes), (b)  the gap to spin-Iriplet exciiations, (c) the two nearest- 
neighbour correlation functions (c'L,,i), (P:i+l)  for a symmetry-broken combidon of the two 
tolal-spin singlet ground-staIes (1 = I omiaed) and (4 the symmetry-breaking order-paramefer 
(PF-,,; - P:i+l) (A = 1 omiued). all a~ a function of the inverse length of the chain, 1 / N .  

estimate for the energy to the lowest-lying solitonic excitation in figure 4. The results are 
much less size-dependent than those for the triplet excitations although the predictions are. 
surprisingly similar. Extrapolation suggests that the gap vanishes just before we reach the 
pure projector Hamiltonian. The smaller scatter can be interpreted easily in the solitonic 
picture: for the even membered chains there are two solitons which repel, whereas for the 
odd-membered chain there is only one. Since the effecfive room for each soliton is half for 
the even-membered chains they converge correspondingly slower. 

Our results suggest an unexpected picture of a ground state for the chain with nearest- 
neighbour spin-zero projectors. We predict a broken symmetry but no gap to excitations. 
It seems natural to believe that one of these two results must be wrong. Indeed, the exact 
solution to the spin-zero projector Hamiltonian provides a gap of 0.0577J [SI, which is 
difficult although possible to believe from OUT results. 

In order to clarify further what the system is actually doing, we have also finite-size 
scaled the extensive sublattice magnetization fractions in figure. 5: 

where N is the number of atoms on one sublattice and the sum is restricted to one sublattice. 
Extrapolation suggests that this magnetization remains finite for all cases. If this result is 
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Figure 4. A finite-size seal- 
ing calculation of ow estimate 
for the energy gap to solitonic 
excitations. We take the odd- 
membered chain pound-sfafe en- 
ergy and subtract off an e b  
timate for the even-membered 
gmund-state energy based on (U) 

the next-&est wenmembered 
chain and (b) the next-smallest 
wenmembered chain and then 
plot this 'gap' as a function of the 
inverse chain length, 1 / N .  The 
smaller values of A correspond to 
the smaller points for this case, in 
order to simplify the picture. 

Pigum 5. A finite-size scaling 
calculation of the magnetization, 
M. as a function of the inverse 
chain kn&. 1/N. The value 
A = I is omi& and smaiier 
values of* are plotted with larger 

0.0 0.05 0.1 0.15 0.2 0.25 points. 

believed, it does not mean that there is no order, because we may have selected the wrong 
order parameter. It would be surprising, however, if there was no relationship between 
the order generated and this magnetization. We have also calculated the corresponding 
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sublattice magnetization for the Heisenberg model, and even without long-range order, the’ 
Heisenberg model correlations dominate those for our projector Hamiltonian. 
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5. Conclusions 

Perhaps the most interesting conclusion is that the spin-physics of the isotropic nearest- 
neighbour painvise interacting spin-one chain is richer than the corresponding spin-half 
chain. As well as the isotropic gapped ground states to the Heisenberg model and P2 
projector, which are directly analogous to the spin-half ‘dimer’ phases, there may also be 
the symmetry-broken ground state to the -Po projector. In between these two phases is a 
gapless phase affecting the transition. The three. types of states can all be described by the 
representation -Po -hP’,  with A = 0 possibly being symmetry broken, h = 1/3 being the 
gapless intermediate and with A = 213 or 1 being the Heisenberg model and P 2  projector 
respectively. As well as this sequence of phases there are also transitions similar to that 
found in the spin-half model, namely out of the gapless -P’ permutation state into the 
-PI - 3P2 Heisenberg ferromagnet for example. 

In order to try to demonstrate the existence of the symmetry breaking for the -Po 
projector, we have included a second contribution into the Hamiltonian in order to make 
it solvable. In physical terms, it would be quantum fluctuations alone that cause the 
symmetry breaking for the -Po model, whereas for our exact solution we have included 
some geometric frustration to further destabilize the ordered phase. An ordered Neel-like 
state finds next-nearest neighbours parallel, and the inclusion of the next-nearest -PI13 
projector enhances the probability of finding them in other spin configurations, eventually 
decorrelating them. This interpretation is born out by an analysis of the numerical spin-spin 
correlation functions. 

There exists a second framework in which to interpret our results: ‘dimer’ states. Dimers 
are pairs of spins which are in a total-spin singlet state. As such, they are correlated only 
with each other and not with any other spins. Quantum fluctuations prefer dimers which 
allow spins to locally explore all orientations in contrast to classical ordering for which each 
spin has a most probable orientation. The first such dimer state was found for spin-half [9] 
and our exact solutions are the natural generalization to larger spin magnitudes. In order 
to stabilize the pure state it is necessary to weaken the classical ordering energy allowing 
the quantum fluctuations to dominate. This is achieved by introducing geomehic frustration 
into the system, penalizing the longer-range consequences of the classical order. 

Our initial model, including only total-spin-zero projectors, is strongly quantum 
mechanical in contrast to the Heisenberg model. Only if spins fluctuate in direction does 
the system gain energy. This fact leads to several counter-intuitive consequences. Firstly, 
the symmetry breaking, which should be viewed as a quantum effect, is stronger in the 
classical limit, where trying to correlate the motion of more than two spins is impractical: 
if we consider three spins in a line, then the two relevant states find the central spin in a total- 
spin singlet with each of the two edge spins. The overlap of these two states is 1/(2S f 1) 
which scales to zero for large spins enforcing the symmetry breaking. Secondly, the low- 
lying excitations are solitonic carrying spin S, so for the classical limit the excitations carry 
a huge spin in contrast to spin waves. This result is a consequence of the dominant role of a 
dimer, the breaking of which requires the formation of uncorrelated spins which have spin S. 
Clearly a pair of such excitations can have any total spin ranging from zero to 2s. Thirdly, 
the excitation solutions themselves involve more classical spin correlations in the quantum 
limit, since the stronger mahix elements allow some of the lost quantum-fluctuation energy 
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to be recouped as classical ordering energy around the soliton. This final result explains 
why the spin-one soliton is so much better predicted by the analytic calculation. 

Another consequence of the additional stability for the spontaneous symmetry breaking 
in the classical limit, is the increase in the magnitude of the spin gap. The analytic 
prediction is ;(I + 1/2S)-* which tends to 1/2 from the initial sequence of 1/8, 2/9, 
9/32, 8/25, . . .. This additional stability leads to the natural conjecture that the geomeizic 
frustration contribution between next-nearest neighbours will become irrelevant for higher 
spins. For spin-half the geometric frustration is crucial, since the linear chain is known 
to have an isotropic gapless ground-state [6]. It is our belief that the broken-symmetry 
ground state remains for the spin-one chain and higher spins. The only evidence we have is 
numerical, and as can be seen from the previous section this evidence is not conclusive. It 
is however known that there is a gap to excitations for the spin-one projector 181, although 
the existence of symmetry-breaking appears to remain a conjecture. 

The final important issue is that of physical relevance. Unfortunately, the dominant 
interaction for the more itinerant systems is the Heisenberg interaction. The usual kinetic 
exchange argument acts on the constituent electrons making up a spin, depending dominantly 
on the probability that any two on different atoms are in a total-spin singlet and this 
probability is directly related to the Heisenberg interaction since all elect” are equivalent 
when all are parallel. Only the more localized systems, dominated by spin-orbit and 
Coulombic forces rather than kinetic exchange, are candidates for our solution and it appears 
that the assumption of isotropy is poor for these systems being strongly broken by spin-orbit 
interactions combined with crystal-field interactions. Physical realizations of OUT model are 
unlikely. 

- 

Appendix 

In this appendix we verify that the number of non-interleaved singlet states composed of 
singlet pairs connecting one sublanice to another is the same size as the total-spin singlet 
subspace for a spin-half problem. If we denote this number of non-interleaved states as Sa, 
for n pairs of atoms, then this result is 

We prove this result by considering free boundary conditions and an atom at one end of 
the chain. This atom must be paired with another atom, and the non-interleaved hypothesis 
means that this second atom mmt cut the chain into two unconnected pieces. Adding up 
over all possible intermediate second atoms, we find 

(-42) 

where So = 1. Transforming via 

yields 

S(x) = 1 + x S ( x ) S ( x )  
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which can be immediately solved to give 
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1-Ji=X 
2 x .  

S ( X )  = 

It is elementary to expand this square root in a power series to deduce that 

as required. 
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